Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma

نویسندگان

  • David M. Thomas
  • Sandra A. Johnson
  • Natalie A. Sims
  • Melanie K. Trivett
  • John L. Slavin
  • Brian P. Rubin
  • Paul Waring
  • Grant A. McArthur
  • Carl R. Walkley
  • Andrew J. Holloway
  • Dileepa Diyagama
  • Jonathon E. Grim
  • Bruce E. Clurman
  • David D.L. Bowtell
  • Jong-Seo Lee
  • Gabriel M. Gutierrez
  • Denise M. Piscopo
  • Shannon A. Carty
  • Philip W. Hinds
چکیده

The molecular basis for the inverse relationship between differentiation and tumorigenesis is unknown. The function of runx2, a master regulator of osteoblast differentiation belonging to the runt family of tumor suppressor genes, is consistently disrupted in osteosarcoma cell lines. Ectopic expression of runx2 induces p27KIP1, thereby inhibiting the activity of S-phase cyclin complexes and leading to the dephosphorylation of the retinoblastoma tumor suppressor protein (pRb) and a G1 cell cycle arrest. Runx2 physically interacts with the hypophosphorylated form of pRb, a known coactivator of runx2, thereby completing a feed-forward loop in which progressive cell cycle exit promotes increased expression of the osteoblast phenotype. Loss of p27KIP1 perturbs transient and terminal cell cycle exit in osteoblasts. Consistent with the incompatibility of malignant transformation and permanent cell cycle exit, loss of p27KIP1 expression correlates with dedifferentiation in high-grade human osteosarcomas. Physiologic coupling of osteoblast differentiation to cell cycle withdrawal is mediated through runx2 and p27KIP1, and these processes are disrupted in osteosarcoma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CD99 Drives Terminal Differentiation of Osteosarcoma Cells by Acting as a Spatial Regulator of ERK 1/2†

Differentiation therapy is an attractive treatment for osteosarcoma (OS). CD99 is a cell surface molecule expressed in mesenchymal stem cells and osteoblasts that is maintained during osteoblast differentiation while lost in OS. Herein, we show that whenever OS cells regain CD99, they become prone to reactivate the terminal differentiation program. In differentiating conditions, CD99-transfecte...

متن کامل

Osteoblast differentiation and skeletal development are regulated by Mdm2–p53 signaling

Mdm2 is required to negatively regulate p53 activity at the peri-implantation stage of early mouse development. However, the absolute requirement for Mdm2 throughout embryogenesis and in organogenesis is unknown. To explore Mdm2-p53 signaling in osteogenesis, Mdm2-conditional mice were bred with Col3.6-Cre-transgenic mice that express Cre recombinase in osteoblast lineage cells. Mdm2-conditiona...

متن کامل

Activation of peroxisome proliferator-activated receptor-gamma inhibits the Runx2-mediated transcription of osteocalcin in osteoblasts.

Mesenchymal cells are able to differentiate into several distinct cell types, including osteoblasts and adipocytes. The commitment to a particular lineage may be regulated by specific transcription factors. Peroxisome proliferator-activated receptor-gamma (PPARgamma), acting in conjunction with CCAAT/enhancer-binding protein-alpha, has been suggested as a key regulator of adipogenic differentia...

متن کامل

The cancer-related transcription factor Runx2 modulates cell proliferation in human osteosarcoma cell lines.

Runx2 regulates osteogenic differentiation and bone formation, but also suppresses pre-osteoblast proliferation by affecting cell cycle progression in the G(1) phase. The growth suppressive potential of Runx2 is normally inactivated in part by protein destabilization, which permits cell cycle progression beyond the G(1)/S phase transition, and Runx2 is again up-regulated after mitosis. Runx2 ex...

متن کامل

Research findings working with the p53 and Rb1 targeted osteosarcoma mouse model.

Osteosarcoma (OS) is the most common bone cancer in children and young adults. The etiology of osteosarcoma is currently unknown. Besides the predominant osteoblasts, the presence of cartilage forming chondrocytes within its tumor tissues suggests a role of chondrogenesis in osteosarcoma development. Runx2 is a master transcription factor both for osteoblast differentiation and for chondrocyte ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 167  شماره 

صفحات  -

تاریخ انتشار 2004